Sharp maximal inequalities for continuous-path semimartingales
نویسندگان
چکیده
منابع مشابه
Sharp Maximal Inequalities for Conditionally Symmetric Martingales and Brownian Motion
Let B = {Bt)t>0 be a standard Brownian motion. For c > 0, k > 0 , let T(c, k) = inî{t > 0: maxs<í Bs cBt > k} , T"(c,k)= inf{r>0: max^, \BS\ c\B,\ > k} . We show that for c > 0 and k > 0, both T(c, k) and T*{c, k) axe finite almost everywhere. Moreover, T(c, k) and T*(c, k) e L if and only if c < pKp 1) for p > 1 , and for all c > 0 when p < 1 . These results have analogues for simple random wa...
متن کاملSharp Weighted Inequalities for the Vector–valued Maximal Function
We prove in this paper some sharp weighted inequalities for the vector–valued maximal function Mq of Fefferman and Stein defined by Mqf(x) = ( ∞ ∑ i=1 (Mfi(x)) q )1/q , where M is the Hardy–Littlewood maximal function. As a consequence we derive the main result establishing that in the range 1 < q < p < ∞ there exists a constant C such that ∫ Rn Mqf(x) p w(x)dx ≤ C ∫ Rn |f(x)|qM [ p q ]+1 w(x)d...
متن کاملSharp Inequalities for Maximal Functions Associated with General Measures
Sharp weak type (1, 1) and L p estimates in dimension one are obtained for uncentered maximal functions associated with Borel measures which do not necessarily satisfy a doubling condition. In higher dimensions uncentered maximal functions fail to satisfy such estimates. Analogous results for centered maximal functions are given in all dimensions.
متن کاملWeighted Rearrangement Inequalities for Local Sharp Maximal Functions
Several weighted rearrangement inequalities for uncentered and centered local sharp functions are proved. These results are applied to obtain new weighted weak-type and strong-type estimates for singular integrals. A self-improving property of sharp function inequalities is established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2013
ISSN: 1331-4343
DOI: 10.7153/mia-16-05